VGAE
- class VGAE[source]
- Bases: - VGAE,- EmbeddingMixin- __init__(dim, hidden_dim, num_features, dist=False)[source]
- initialise a Variational Graph Auto-Encoder model - Parameters:
- dim – output dimension 
- hidden_dim – inner hidden dimension 
- num_features – number of input features 
- dist – if - Trueuse distance decoder, otherwise use inner product decoder (default:- False)
 
- Returns:
- initialised - tg.nn.VGAEmodel
 
 - Methods - initialise a Variational Graph Auto-Encoder model - add_module- Add a child module to the current module. - apply- Apply - fnrecursively to every submodule (as returned by- .children()) as well as self.- bfloat16- Casts all floating point parameters and buffers to - bfloat16datatype.- buffers- Return an iterator over module buffers. - children- Return an iterator over immediate children modules. - compile- Compile this Module's forward using - torch.compile().- cpu- Move all model parameters and buffers to the CPU. - cuda- Move all model parameters and buffers to the GPU. - decode- Runs the decoder and computes edge probabilities. - double- Casts all floating point parameters and buffers to - doubledatatype.- embed- Compute embedding for model and data - encode- eval- Set the module in evaluation mode. - extra_repr- Set the extra representation of the module. - float- Casts all floating point parameters and buffers to - floatdatatype.- forward- Alias for - encode().- get_buffer- Return the buffer given by - targetif it exists, otherwise throw an error.- get_extra_state- Return any extra state to include in the module's state_dict. - get_parameter- Return the parameter given by - targetif it exists, otherwise throw an error.- get_submodule- Return the submodule given by - targetif it exists, otherwise throw an error.- half- Casts all floating point parameters and buffers to - halfdatatype.- ipu- Move all model parameters and buffers to the IPU. - kl_loss- Computes the KL loss, either for the passed arguments - muand- logstd, or based on latent variables from last encoding.- load_state_dict- Copy parameters and buffers from - state_dictinto this module and its descendants.- modules- Return an iterator over all modules in the network. - named_buffers- Return an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself. - named_children- Return an iterator over immediate children modules, yielding both the name of the module as well as the module itself. - named_modules- Return an iterator over all modules in the network, yielding both the name of the module as well as the module itself. - named_parameters- Return an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself. - parameters- Return an iterator over module parameters. - recon_loss- Given latent variables - z, computes the binary cross entropy loss for positive edges- pos_edge_indexand negative sampled edges.- register_backward_hook- Register a backward hook on the module. - register_buffer- Add a buffer to the module. - register_forward_hook- Register a forward hook on the module. - register_forward_pre_hook- Register a forward pre-hook on the module. - register_full_backward_hook- Register a backward hook on the module. - register_full_backward_pre_hook- Register a backward pre-hook on the module. - register_load_state_dict_post_hook- Register a post hook to be run after module's - load_state_dictis called.- register_module- Alias for - add_module().- register_parameter- Add a parameter to the module. - register_state_dict_pre_hook- Register a pre-hook for the - load_state_dict()method.- reparametrize- requires_grad_- Change if autograd should record operations on parameters in this module. - reset_parameters- Resets all learnable parameters of the module. - set_extra_state- Set extra state contained in the loaded state_dict. - share_memory- See - torch.Tensor.share_memory_().- state_dict- Return a dictionary containing references to the whole state of the module. - test- Given latent variables - z, positive edges- pos_edge_indexand negative edges- neg_edge_index, computes area under the ROC curve (AUC) and average precision (AP) scores.- to- Move and/or cast the parameters and buffers. - to_empty- Move the parameters and buffers to the specified device without copying storage. - train- Set the module in training mode. - type- Casts all parameters and buffers to - dst_type.- xpu- Move all model parameters and buffers to the XPU. - zero_grad- Reset gradients of all model parameters. - Attributes - T_destination- call_super_init- dump_patches- training