VGAE

class VGAE[source]

Bases: VGAE, EmbeddingMixin

__init__(dim, hidden_dim, num_features, dist=False)[source]

initialise a Variational Graph Auto-Encoder model

Parameters:
  • dim – output dimension

  • hidden_dim – inner hidden dimension

  • num_features – number of input features

  • dist – if True use distance decoder, otherwise use inner product decoder (default: False)

Returns:

initialised tg.nn.VGAE model

Methods

__init__

initialise a Variational Graph Auto-Encoder model

add_module

Add a child module to the current module.

apply

Apply fn recursively to every submodule (as returned by .children()) as well as self.

bfloat16

Casts all floating point parameters and buffers to bfloat16 datatype.

buffers

Return an iterator over module buffers.

children

Return an iterator over immediate children modules.

compile

Compile this Module's forward using torch.compile().

cpu

Move all model parameters and buffers to the CPU.

cuda

Move all model parameters and buffers to the GPU.

decode

Runs the decoder and computes edge probabilities.

double

Casts all floating point parameters and buffers to double datatype.

embed

Compute embedding for model and data

encode

eval

Set the module in evaluation mode.

extra_repr

Set the extra representation of the module.

float

Casts all floating point parameters and buffers to float datatype.

forward

Alias for encode().

get_buffer

Return the buffer given by target if it exists, otherwise throw an error.

get_extra_state

Return any extra state to include in the module's state_dict.

get_parameter

Return the parameter given by target if it exists, otherwise throw an error.

get_submodule

Return the submodule given by target if it exists, otherwise throw an error.

half

Casts all floating point parameters and buffers to half datatype.

ipu

Move all model parameters and buffers to the IPU.

kl_loss

Computes the KL loss, either for the passed arguments mu and logstd, or based on latent variables from last encoding.

load_state_dict

Copy parameters and buffers from state_dict into this module and its descendants.

modules

Return an iterator over all modules in the network.

named_buffers

Return an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.

named_children

Return an iterator over immediate children modules, yielding both the name of the module as well as the module itself.

named_modules

Return an iterator over all modules in the network, yielding both the name of the module as well as the module itself.

named_parameters

Return an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.

parameters

Return an iterator over module parameters.

recon_loss

Given latent variables z, computes the binary cross entropy loss for positive edges pos_edge_index and negative sampled edges.

register_backward_hook

Register a backward hook on the module.

register_buffer

Add a buffer to the module.

register_forward_hook

Register a forward hook on the module.

register_forward_pre_hook

Register a forward pre-hook on the module.

register_full_backward_hook

Register a backward hook on the module.

register_full_backward_pre_hook

Register a backward pre-hook on the module.

register_load_state_dict_post_hook

Register a post hook to be run after module's load_state_dict is called.

register_module

Alias for add_module().

register_parameter

Add a parameter to the module.

register_state_dict_pre_hook

Register a pre-hook for the load_state_dict() method.

reparametrize

requires_grad_

Change if autograd should record operations on parameters in this module.

reset_parameters

Resets all learnable parameters of the module.

set_extra_state

Set extra state contained in the loaded state_dict.

share_memory

See torch.Tensor.share_memory_().

state_dict

Return a dictionary containing references to the whole state of the module.

test

Given latent variables z, positive edges pos_edge_index and negative edges neg_edge_index, computes area under the ROC curve (AUC) and average precision (AP) scores.

to

Move and/or cast the parameters and buffers.

to_empty

Move the parameters and buffers to the specified device without copying storage.

train

Set the module in training mode.

type

Casts all parameters and buffers to dst_type.

xpu

Move all model parameters and buffers to the XPU.

zero_grad

Reset gradients of all model parameters.

Attributes

T_destination

call_super_init

dump_patches

training